In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym( X).
For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure.
The above is sometimes called the full symmetry group of X to emphasize that it includes orientation-reversing isometries (reflections, and improper rotations), as long as those isometries map this particular X to itself. The subgroup of orientation-preserving symmetries (translations, rotations, and compositions of these) is called its proper symmetry group. An object is chiral when it has no orientation-reversing symmetries, so that its proper symmetry group is equal to its full symmetry group.
Any symmetry group whose elements have a common fixed point, which is true if the group is finite or the figure is bounded, can be represented as a subgroup of the orthogonal group O( n) by choosing the origin to be a fixed point. The proper symmetry group is then a subgroup of the special orthogonal group SO( n), and is called the rotation group of the figure.
In a Discrete group, the points symmetric to a given point do not accumulate toward a limit point. That is, every orbit of the group (the images of a given point under all group elements) forms a discrete set. All finite symmetry groups are discrete.
Discrete symmetry groups come in three types: (1) finite , which include only rotations, reflections, inversions and rotoinversions – i.e., the finite subgroups of O( n); (2) infinite lattice groups, which include only translations; and (3) infinite containing elements of both previous types, and perhaps also extra transformations like screw displacements and glide reflections. There are also continuous symmetry groups (), which contain rotations of arbitrarily small angles or translations of arbitrarily small distances. An example is orthogonal group, the symmetry group of a sphere. Symmetry groups of Euclidean objects may be completely classified as the subgroups of the Euclidean group E( n) (the isometry group of R n).
Two geometric figures have the same symmetry type when their symmetry groups are conjugate subgroups of the Euclidean group: that is, when the subgroups H1, H2 are related by for some g in E( n). For example:
In the following sections, we only consider isometry groups whose orbits are topologically closed, including all discrete and continuous isometry groups. However, this excludes for example the 1D group of translations by a rational number; such a non-closed figure cannot be drawn with reasonable accuracy due to its arbitrarily fine detail.
C1 is the trivial group containing only the identity operation, which occurs when the figure is asymmetric, for example the letter "F". C2 is the symmetry group of the letter "Z", C3 that of a triskelion, C4 of a swastika, and C5, C6, etc. are the symmetry groups of similar swastika-like figures with five, six, etc. arms instead of four.
D1 is the 2-element group containing the identity operation and a single reflection, which occurs when the figure has only a single axis of bilateral symmetry, for example the letter "A".
D2, which is isomorphic to the Klein four-group, is the symmetry group of a non-equilateral rectangle. This figure has four symmetry operations: the identity operation, one twofold axis of rotation, and two nonequivalent mirror planes.
D3, D4 etc. are the symmetry groups of the .
Within each of these symmetry types, there are two degrees of freedom for the center of rotation, and in the case of the dihedral groups, one more for the positions of the mirrors.
The remaining isometry groups in two dimensions with a fixed point are:
Non-bounded figures may have isometry groups including translations; these are:
The continuous symmetry groups with a fixed point include those of:
For objects with scalar field patterns, the cylindrical symmetry implies vertical reflection symmetry as well. However, this is not true for vector field patterns: for example, in cylindrical coordinates with respect to some axis, the vector field has cylindrical symmetry with respect to the axis whenever and have this symmetry (no dependence on ); and it has reflectional symmetry only when .
For spherical symmetry, there is no such distinction: any patterned object has planes of reflection symmetry.
The continuous symmetry groups without a fixed point include those with a screw axis, such as an infinite helix. See also subgroups of the Euclidean group.
For example, objects in a hyperbolic non-Euclidean geometry have Fuchsian group, which are the discrete subgroups of the isometry group of the hyperbolic plane, preserving hyperbolic rather than Euclidean distance. (Some are depicted in drawings of Escher.) Similarly, automorphism groups of finite geometry preserve families of point-sets (discrete subspaces) rather than Euclidean subspaces, distances, or inner products. Just as for Euclidean figures, objects in any geometric space have symmetry groups which are subgroups of the symmetries of the ambient space.
Another example of a symmetry group is that of a combinatorial graph: a graph symmetry is a permutation of the vertices which takes edges to edges. Any finitely presented group is the symmetry group of its Cayley graph; the free group is the symmetry group of an infinite tree graph.
For example, let G = Sym( X) be the finite symmetry group of a figure X in a Euclidean space, and let H ⊂ G be a subgroup. Then H can be interpreted as the symmetry group of X+, a "decorated" version of X. Such a decoration may be constructed as follows. Add some patterns such as arrows or colors to X so as to break all symmetry, obtaining a figure X# with Sym( X#) = {1}, the trivial subgroup; that is, gX# ≠ X# for all non-trivial g ∈ G. Now we get:
may also be characterized in this framework. The symmetry group of the translation gX + is the conjugate subgroup gHg−1. Thus H is normal whenever:
As an example, consider the dihedral group G = D3 = Sym( X), where X is an equilateral triangle. We may decorate this with an arrow on one edge, obtaining an asymmetric figure X#. Letting τ ∈ G be the reflection of the arrowed edge, the composite figure X+ = X# ∪ τ X# has a bidirectional arrow on that edge, and its symmetry group is H = {1, τ}. This subgroup is not normal, since gX+ may have the bi-arrow on a different edge, giving a different reflection symmetry group.
However, letting H = {1, ρ, ρ2} ⊂ D3 be the cyclic subgroup generated by a rotation, the decorated figure X+ consists of a 3-cycle of arrows with consistent orientation. Then H is normal, since drawing such a cycle with either orientation yields the same symmetry group H.
|
|